具有恒定长度的System.arraycopy

我正在玩JMH( http://openjdk.java.net/projects/code-tools/jmh/ ),我偶然发现了一个奇怪的结果。

我正在对数组的浅层副本进行基准测试,我可以观察到预期的结果(循环遍历数组是一个坏主意,并且#clone()System#arraycopy()Arrays#copyOf()之间没有显着差异Arrays#copyOf() ,性能方面)。

当数组的长度是硬编码时System#arraycopy()减慢四分之一……等等,什么? 怎么会这么慢?

有没有人知道可能是什么原因?

结果(吞吐量):

 # JMH 1.11 (released 17 days ago) # VM version: JDK 1.8.0_05, VM 25.5-b02 # VM invoker: /Library/Java/JavaVirtualMachines/jdk1.8.0_05.jdk/Contents/Home/jre/bin/java # VM options: -Dfile.encoding=UTF-8 -Duser.country=FR -Duser.language=fr -Duser.variant # Warmup: 20 iterations, 1 s each # Measurement: 20 iterations, 1 s each # Timeout: 10 min per iteration # Threads: 1 thread, will synchronize iterations # Benchmark mode: Throughput, ops/time Benchmark Mode Cnt Score Error Units ArrayCopyBenchmark.ArraysCopyOf thrpt 20 67100500,319 ± 455252,537 ops/s ArrayCopyBenchmark.ArraysCopyOf_Class thrpt 20 65246374,290 ± 976481,330 ops/s ArrayCopyBenchmark.ArraysCopyOf_Class_ConstantSize thrpt 20 65068143,162 ± 1597390,531 ops/s ArrayCopyBenchmark.ArraysCopyOf_ConstantSize thrpt 20 64463603,462 ± 953946,811 ops/s ArrayCopyBenchmark.Clone thrpt 20 64837239,393 ± 834353,404 ops/s ArrayCopyBenchmark.Loop thrpt 20 21070422,097 ± 112595,764 ops/s ArrayCopyBenchmark.Loop_ConstantSize thrpt 20 24458867,274 ± 181486,291 ops/s ArrayCopyBenchmark.SystemArrayCopy thrpt 20 66688368,490 ± 582416,954 ops/s ArrayCopyBenchmark.SystemArrayCopy_ConstantSize thrpt 20 48992312,357 ± 298807,039 ops/s 

而基准类:

 import java.util.Arrays; import java.util.concurrent.TimeUnit; import org.openjdk.jmh.annotations.Benchmark; import org.openjdk.jmh.annotations.BenchmarkMode; import org.openjdk.jmh.annotations.Mode; import org.openjdk.jmh.annotations.OutputTimeUnit; import org.openjdk.jmh.annotations.Scope; import org.openjdk.jmh.annotations.Setup; import org.openjdk.jmh.annotations.State; @State(Scope.Benchmark) @BenchmarkMode(Mode.Throughput) @OutputTimeUnit(TimeUnit.SECONDS) public class ArrayCopyBenchmark { private static final int LENGTH = 32; private Object[] array; @Setup public void before() { array = new Object[LENGTH]; for (int i = 0; i < LENGTH; i++) { array[i] = new Object(); } } @Benchmark public Object[] Clone() { Object[] src = this.array; return src.clone(); } @Benchmark public Object[] ArraysCopyOf() { Object[] src = this.array; return Arrays.copyOf(src, src.length); } @Benchmark public Object[] ArraysCopyOf_ConstantSize() { Object[] src = this.array; return Arrays.copyOf(src, LENGTH); } @Benchmark public Object[] ArraysCopyOf_Class() { Object[] src = this.array; return Arrays.copyOf(src, src.length, Object[].class); } @Benchmark public Object[] ArraysCopyOf_Class_ConstantSize() { Object[] src = this.array; return Arrays.copyOf(src, LENGTH, Object[].class); } @Benchmark public Object[] SystemArrayCopy() { Object[] src = this.array; int length = src.length; Object[] array = new Object[length]; System.arraycopy(src, 0, array, 0, length); return array; } @Benchmark public Object[] SystemArrayCopy_ConstantSize() { Object[] src = this.array; Object[] array = new Object[LENGTH]; System.arraycopy(src, 0, array, 0, LENGTH); return array; } @Benchmark public Object[] Loop() { Object[] src = this.array; int length = src.length; Object[] array = new Object[length]; for (int i = 0; i < length; i++) { array[i] = src[i]; } return array; } @Benchmark public Object[] Loop_ConstantSize() { Object[] src = this.array; Object[] array = new Object[LENGTH]; for (int i = 0; i < LENGTH; i++) { array[i] = src[i]; } return array; } } 

像往常一样,通过研究生成的代码可以快速回答这些问题。 JMH在Linux上为您提供-prof perfasm ,在Windows上为-prof xperfasm提供。 如果您在JDK 8u40上运行基准测试,那么您将看到(注意我使用-bm avgt -tu ns来使分数更易于理解):

 Benchmark Mode Cnt Score Error Units ACB.SystemArrayCopy avgt 25 13.294 ± 0.052 ns/op ACB.SystemArrayCopy_ConstantSize avgt 25 16.413 ± 0.080 ns/op 

为什么这些基准测试表现不同? 让我们首先做一个-prof perfnorm来解剖(我删除了无关紧要的行):

 Benchmark Mode Cnt Score Error Units ACB.SAC avgt 25 13.466 ± 0.070 ns/op ACB.SAC:·CPI avgt 5 0.602 ± 0.025 #/op ACB.SAC:·L1-dcache-load-misses avgt 5 2.346 ± 0.239 #/op ACB.SAC:·L1-dcache-loads avgt 5 24.756 ± 1.438 #/op ACB.SAC:·L1-dcache-store-misses avgt 5 2.404 ± 0.129 #/op ACB.SAC:·L1-dcache-stores avgt 5 14.929 ± 0.230 #/op ACB.SAC:·LLC-loads avgt 5 2.151 ± 0.217 #/op ACB.SAC:·branches avgt 5 17.795 ± 1.003 #/op ACB.SAC:·cycles avgt 5 56.677 ± 3.187 #/op ACB.SAC:·instructions avgt 5 94.145 ± 6.442 #/op ACB.SAC_ConstantSize avgt 25 16.447 ± 0.084 ns/op ACB.SAC_ConstantSize:·CPI avgt 5 0.637 ± 0.016 #/op ACB.SAC_ConstantSize:·L1-dcache-load-misses avgt 5 2.357 ± 0.206 #/op ACB.SAC_ConstantSize:·L1-dcache-loads avgt 5 25.611 ± 1.482 #/op ACB.SAC_ConstantSize:·L1-dcache-store-misses avgt 5 2.368 ± 0.123 #/op ACB.SAC_ConstantSize:·L1-dcache-stores avgt 5 25.593 ± 1.610 #/op ACB.SAC_ConstantSize:·LLC-loads avgt 5 1.050 ± 0.038 #/op ACB.SAC_ConstantSize:·branches avgt 5 17.853 ± 0.697 #/op ACB.SAC_ConstantSize:·cycles avgt 5 66.680 ± 2.049 #/op ACB.SAC_ConstantSize:·instructions avgt 5 104.759 ± 4.831 #/op 

因此, ConstantSize以某种方式执行更多的L1-dcache存储,但少了一个LLC负载。 嗯,这就是我们正在寻找的,在不变的情况下更多的商店。 -prof perfasm方便地突出了assembly中的热部件:

default

  4.32% 6.36% 0x00007f7714bda2dc: movq $0x1,(%rax) ; alloc 0.09% 0.04% 0x00007f7714bda2e3: prefetchnta 0x100(%r9) 2.95% 1.48% 0x00007f7714bda2eb: movl $0xf80022a9,0x8(%rax) 0.38% 0.18% 0x00007f7714bda2f2: mov %r11d,0xc(%rax) 1.56% 3.02% 0x00007f7714bda2f6: prefetchnta 0x140(%r9) 4.73% 2.71% 0x00007f7714bda2fe: prefetchnta 0x180(%r9) 

ConstantSize

  0.58% 1.22% 0x00007facf921132b: movq $0x1,(%r14) ; alloc 0.84% 0.72% 0x00007facf9211332: prefetchnta 0xc0(%r10) 0.11% 0.13% 0x00007facf921133a: movl $0xf80022a9,0x8(%r14) 0.21% 0.68% 0x00007facf9211342: prefetchnta 0x100(%r10) 0.50% 0.87% 0x00007facf921134a: movl $0x20,0xc(%r14) 0.53% 0.82% 0x00007facf9211352: mov $0x10,%ecx 0.04% 0.14% 0x00007facf9211357: xor %rax,%rax 0.34% 0.76% 0x00007facf921135a: shl $0x3,%rcx 0.50% 1.17% 0x00007facf921135e: rex.W rep stos %al,%es:(%rdi) ; zeroing 29.49% 52.09% 0x00007facf9211361: prefetchnta 0x140(%r10) 1.03% 0.53% 0x00007facf9211369: prefetchnta 0x180(%r10) 

因此,有一个讨厌的rex.W rep stos %al,%es:(%rdi)消耗了大量时间。 这会将新分配的数组归零。 在ConstantSize测试中,JVM无法关联您覆盖整个目标数组,因此在进入实际数组副本之前必须将其预先归零。

如果您查看JDK 9b82上生成的代码(最新的可用代码),那么您将看到它在非归零副本中折叠两种模式,如-prof perfasm ,并且还可以使用-prof perfnorm确认:

 Benchmark Mode Cnt Score Error Units ACB.SAC avgt 50 14.156 ± 0.492 ns/op ACB.SAC:·CPI avgt 5 0.612 ± 0.144 #/op ACB.SAC:·L1-dcache-load-misses avgt 5 2.363 ± 0.341 #/op ACB.SAC:·L1-dcache-loads avgt 5 28.350 ± 2.181 #/op ACB.SAC:·L1-dcache-store-misses avgt 5 2.287 ± 0.607 #/op ACB.SAC:·L1-dcache-stores avgt 5 16.922 ± 3.402 #/op ACB.SAC:·branches avgt 5 21.242 ± 5.914 #/op ACB.SAC:·cycles avgt 5 67.168 ± 20.950 #/op ACB.SAC:·instructions avgt 5 109.931 ± 35.905 #/op ACB.SAC_ConstantSize avgt 50 13.763 ± 0.067 ns/op ACB.SAC_ConstantSize:·CPI avgt 5 0.625 ± 0.024 #/op ACB.SAC_ConstantSize:·L1-dcache-load-misses avgt 5 2.376 ± 0.214 #/op ACB.SAC_ConstantSize:·L1-dcache-loads avgt 5 28.285 ± 2.127 #/op ACB.SAC_ConstantSize:·L1-dcache-store-misses avgt 5 2.335 ± 0.223 #/op ACB.SAC_ConstantSize:·L1-dcache-stores avgt 5 16.926 ± 1.467 #/op ACB.SAC_ConstantSize:·branches avgt 5 19.469 ± 0.869 #/op ACB.SAC_ConstantSize:·cycles avgt 5 62.395 ± 3.898 #/op ACB.SAC_ConstantSize:·instructions avgt 5 99.891 ± 5.435 #/op 

当然,所有这些用于arrays检查的纳米标记都容易受到矢量化复制存根中奇怪的对齐引起的性能差异的影响,但这是另一个(恐怖)故事,我没有勇气说出来。