找出Path2D是否自相交

我需要找到Path2D是否与自身相交。 现在,我只需从路径中提取一行数据,然后查找是否有任何相交的行。 但它具有O(n ^ 2)复杂度,因此它非常慢。 有更快的方法吗?

您可以使用扫描线算法更快地完成此操作: http : //en.wikipedia.org/wiki/Sweep_line_algorithm

伪代码:

Each line has a start point and an end point. Say that `start_x` <= `end_x` for all the lines. Create an empty bucket of lines. Sort all the points by their x coordinates, and then iterate through the sorted list. If the current point is a start point, test its line against all the lines in the bucket, and then add its line to the bucket. if the current point is an end point, remove its line from the bucket. 

最坏的情况仍然是O(N^2) ,但平均情况是O(NlogN)

这是我对此算法的Java实现:

 import java.awt.Point; import java.awt.geom.Line2D; import java.awt.geom.PathIterator; import java.util.*; /** * Path2D helper functions. * 

* @author Gili Tzabari */ public class Path2Ds { /** * Indicates if a Path2D intersects itself. *

* @return true if a Path2D intersects itself */ public static boolean isSelfIntersecting(PathIterator path) { SortedSet lines = getLines(path); if (lines.size() <= 1) return false; Set candidates = new HashSet(); for (Line2D line: lines) { if (Double.compare(line.getP1().distance(line.getP2()), 0) <= 0) { // Lines of length 0 do not cause self-intersection continue; } for (Iterator i = candidates.iterator(); i.hasNext();) { Line2D candidate = i.next(); // Logic borrowed from Line2D.intersectsLine() int lineRelativeToCandidate1 = Line2D.relativeCCW(line.getX1(), line.getY1(), line. getX2(), line.getY2(), candidate.getX1(), candidate.getY1()); int lineRelativeToCandidate2 = Line2D.relativeCCW(line.getX1(), line.getY1(), line. getX2(), line.getY2(), candidate.getX2(), candidate.getY2()); int candidateRelativeToLine1 = Line2D.relativeCCW(candidate.getX1(), candidate.getY1(), candidate.getX2(), candidate.getY2(), line.getX1(), line.getY1()); int candidateRelativeToLine2 = Line2D.relativeCCW(candidate.getX1(), candidate.getY1(), candidate.getX2(), candidate.getY2(), line.getX2(), line.getY2()); boolean intersection = (lineRelativeToCandidate1 * lineRelativeToCandidate2 <= 0) && (candidateRelativeToLine1 * candidateRelativeToLine2 <= 0); if (intersection) { // Lines may share a point, so long as they extend in different directions if (lineRelativeToCandidate1 == 0 && lineRelativeToCandidate2 != 0) { // candidate.P1 shares a point with line if (candidateRelativeToLine1 == 0 && candidateRelativeToLine2 != 0) { // line.P1 == candidate.P1 continue; } if (candidateRelativeToLine1 != 0 && candidateRelativeToLine2 == 0) { // line.P2 == candidate.P1 continue; } // else candidate.P1 intersects line } else if (lineRelativeToCandidate1 != 0 && lineRelativeToCandidate2 == 0) { // candidate.P2 shares a point with line if (candidateRelativeToLine1 == 0 && candidateRelativeToLine2 != 0) { // line.P1 == candidate.P2 continue; } if (candidateRelativeToLine1 != 0 && candidateRelativeToLine2 == 0) { // line.P2 == candidate.P2 continue; } // else candidate.P2 intersects line } else { // line and candidate overlap } return true; } if (candidate.getX2() < line.getX1()) i.remove(); } candidates.add(line); } return false; } /** * Returns all lines in a path. The lines are constructed such that the starting point is found * on the left (or same x-coordinate) of the ending point. *

* @param path the path * @return the lines, sorted in ascending order of the x-coordinate of the starting point and * ending point, respectively */ private static SortedSet
getLines(PathIterator path) { double[] coords = new double[6]; SortedSet result = new TreeSet(new Comparator() { @Override public int compare(Line2D o1, Line2D o2) { int result = Double.compare(o1.getX1(), o2.getX1()); if (result == 0) { // Ensure we are consistent with equals() return Double.compare(o1.getX2(), o2.getX2()); } return result; } }); if (path.isDone()) return result; int type = path.currentSegment(coords); assert (type == PathIterator.SEG_MOVETO): type; Point.Double startPoint = new Point.Double(coords[0], coords[1]); Point.Double openPoint = startPoint; path.next(); while (!path.isDone()) { type = path.currentSegment(coords); assert (type != PathIterator.SEG_CUBICTO && type != PathIterator.SEG_QUADTO): type; switch (type) { case PathIterator.SEG_MOVETO: { openPoint = startPoint; break; } case PathIterator.SEG_CLOSE: { coords[0] = openPoint.x; coords[1] = openPoint.y; break; } } Point.Double endPoint = new Point.Double(coords[0], coords[1]); if (Double.compare(startPoint.getX(), endPoint.getX()) < 0) result.add(new Line2D.Double(startPoint, endPoint)); else result.add(new Line2D.Double(endPoint, startPoint)); path.next(); startPoint = endPoint; } return result; } }